Quantitative Analysis

- Moments
- Probability
- Prob. distribution
- Sampling
- Hypothesis Testing
- Correlation & Regression
- Volatility Estimation
- Simulation Modelling
Mean: \(\frac{\sum_{i=1}^{n} X_i}{n} \)

Mode: Value that occurs most frequently

Median: Midpoint of data arranged in ascending/descending order

Variance:

\[s^2 = \frac{\sum_{i=1}^{n} (X_i - X_{\text{mean}})^2}{n - 1} \]

Population variance

\[\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N} \]

Skewness

- Positively: mean > median > mode
- Negatively: mean < median < mode
- Skewness of Normal = 0

Kurtosis

- Leptokurtic: More peaked than normal (fat tails); kurtosis > 3
- Platykurtic: Flatter than a normal; kurtosis < 3
- Kurtosis of Normal = 3
- Excess Kurtosis = Kurtosis - 3

Q. If distributions of returns from financial instruments are leptokurtotic. How does it compare with a normal distribution of the same mean and variance?

Ans. Leptokurtic refers to a distribution with fatter tails than the normal, which implies greater kurtosis.

\[\sigma^2 \text{ of return of stock P} = 100.0 \]
\[\sigma^2 \text{ of return of stock Q} = 225.0 \]
\[\text{Cov(P,Q)} = 53.2 \]
Current Holding $1 mn in P.
New Holding: shifting $1 million in Q and keeping USD 3 million in stock P. What %age of risk (\(\sigma \)), is reduced?

Ans.

\[\sigma_f = \sqrt{w^2 \sigma_A^2 + (1-w)^2 \sigma_B^2 + 2w(1-w)\text{Cov(A,B)}} \]

\[w = 0.75 \]
\[c^2 = 100^2(0.75)^2 + 225^2(0.25)^2 + 2*0.25*0.75*53.2 \]
\[\sigma_f = 9.5 \text{ old } \sigma = \sqrt{100} = 10 \]
Reduction = 5%
Quantitative Analysis

Properties

- \(P(A) = \# \text{ of fav. Events} / \# \text{ of Total Events} \)
- \(0 < P(A) < 1, P(A^c) = 1 - P(A) \)
- \(P(A \cap B) = P(A) + P(B) - P(A \cap B) \)
- \(P(A) + P(B) \) if A, B mutually exclusive
- \(P(A \cap B) = P(A) \cdot P(B) \) if A, B independent
- \(P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C) \) if A, B, C mutually independent

Counting principles

- No. of ways to select \(r \) out of \(n \) objects:
 \(^nC_r = \frac{n!}{r!(n-r)!} \)
- No. of ways to arrange \(r \) objects in \(n \) places:
 \(^nP_r = \frac{n!}{(n-r)!} \)

Sum rule and Bayes' Theorem

- \(P(B) = P(A \cap B) + P(A^c \cap B) \)
- \(P(B) = P(B \mid A) \cdot P(A) + P(B \mid A^c) \cdot P(A^c) \)
- \(P(B/A) = \frac{P(A \cap B)}{P(A) \cdot P(B) + P(A \cap B)} \)

Q. The subsidiary will default if the parent defaults, but the parent will not necessarily default if the subsidiary defaults. Calculate the probability that both default.

Ans.

\[P(P \cap S) = P(S/P) \cdot P(P) = 1 \cdot 0.5 = 0.5\% \]

Discrete

Binomial

- Only 2 possible outcomes: failure or success.
- \(P(x) = \binom{n}{x} \cdot p^x \cdot (1-p)^{n-x} \)

Poisson

- Fix the expectation \(\lambda = np \).
- \(P(x) = \frac{\lambda e^{-\lambda}}{x!} \) if \(x = 0 \)
- \(P(x) = 0 \) otherwise

Continuous

Binomial Random Variable

- \(E(X) = np \)
- \(Var(X) = np(1-p) = npq \)

Q. The number of false fire alarms in a suburb of Houston averages 2.1 per day. What is the (approximate) probability that there would be 4 false alarms on 1 day?

Ans.

\[P(X = x) = \frac{\lambda e^{-\lambda}}{x!} \] if \(x = 0 \)
\[P(X = 0) = 0 \] otherwise

Q. A portfolio consists of 17 uncorrelated bonds. The 1-year marginal default prob. of each bond is 5.93%. If spread of default prob. is even over the year, calculate the prob. of exactly 2 bonds defaulting in first month?

Ans.

1-month default rate = \(1 - (1 - 0.593)^{1/12} \)
\[= 0.00508 \]
Ways to select 2 bonds out of 17 = \(\binom{17}{2} \)
\[= 17 \cdot 16 / 2 \]
P(Exactly 2 defaults)
\[= (17 \cdot 16 / 2) \cdot (0.00508)^2 \cdot (1 - 0.00508) \]
\[= 0.325\% \]
The R.V. X with density function \(f(X) = \frac{1}{b - a} \) for \(a < x < b \), and 0 otherwise, is said to have a uniform distribution over \((a, b)\). Calculate its mean.

Ans.

Since the distribution is uniform, the mean is the center of the distribution, which is the average of \(a \) and \(b = \frac{a+b}{2} \)

At a particular time, the market value of assets of the firm is $100 Mn and the market value of debt is $80 Mn. The standard deviation of assets is $10 Mn. What is the distance to default?

Ans.

\[
 z = \frac{A-K}{\sigma_A} = \frac{100-80}{10} = 2
\]
Thank you!

Contact:

E: help@edupristine.com
Ph: +1 347 647 9001