Quantitative Analysis

Time Value of Money
- Future value
 - Value of current cash flow in future – Compounding
 - Amount to which investment grows after one or more time period $FV = PV \times (1 + 1/Y)^N$.
- Present value
 - Present value of future cash flow – Discounting
 - Current value of some future cash flow $PV = FV / (1 + 1/Y)^N$.

Descriptive Statistics

Probability

Probability Distributions

Sampling

Hypothesis Testing

Technical Analysis

Future value

Present value

Annuities
- Series of equal cash flows occurring at evenly spaced interval
- Ordinary annuity: cash flow at end-of-time period
- Annuity due: cash flow at beginning-of-time period
- $PV_{\text{of Annuity Due}} = PV_{\text{of Ordinary Annuity}} \times (1 + r)$
- Perpetuities: annuities with an infinite life
 - $PV_{\text{perpetuity}} = \frac{PMT}{\text{discount rate}}$

Non-Projected Value

$NPV = \sum_{i=0}^{T} \frac{C_i}{(1 + r)^i} - C_0$

NPV is expressed in monetary units ($), IRR is the true interest yield (%age).
In general, NPV is a better measure.

Q: If interest rate of 8%, what will be the value of sum of $1,000 invested today will grow in 5 years?
Ans: $FV = PV \times (1 + 1/Y)^N$
= $1,000 \times (1.08)^5$
= $1,469.3$

Q: If interest rate of 10%, what sum invested today will grow to $1,000 in 5 years?
Ans: $PV = FV \times (1/(1 + r)^N)$
= $(1,000) \times (1/(1.1)^5) = 621$

Q: What is the worth of perpetuity paying $100 annually at an interest rate of 10%?
Ans: $PV_{\text{perpetuity}} = \frac{A}{r}$
= $100/0.1 = $1,000$

We need to know the first three rows of TI BA-II Plus/Professional calculator for CFA Exam.
Discount rate that makes NPV of all cash flows equal to zero

For mutually exclusive projects, NPV and IRR can give conflicting rankings. NPV is a better measure in such cases.

Q: If I have to invest today $2,000 for a project which gives me $100 next year, $200 the next, and $250 after that till perpetuity, should I make this investment? Cost of Capital = 10%.

Ans:
Value of Perpetuity (At Y2) = 250/0.1 = 2,500

Q: A stock is bought today at $10. It pays a dividend of $1 & you sell it at $15 next year. What is the HPR?

Ans:
HPR = (15+1-10)/10 = 60%

Time Value of Money

Descriptive Statistics

Probability

Probability Distributions

Sampling

Hypothesis Testing

Technical Analysis

IRR

Holding Period Return (Total Return)

Rates of Return on a Portfolio

Money Weighted
• PVs of Cash Inflow = PVs of Cash Outflows
• Solve for discounting rate 'r'

Effective Annual Yield
EAY = (1+HPY)^365/t - 1

Time Weighted
• Form subperiods over the accounting period
• Compute HPR for each subperiod
• Multiply (1+HPR) for each subperiod to get the total return

Bank Discount Yield
R_{BD} = D/F * 360/t

Money Market Yield
r_{MM} = 360 * R_{BD} / (360 – t * R_{BD})

Effective Annual Yield
Quantitative Analysis

Means

- Arithmetic mean: \(\bar{X} = \frac{\sum_{i=1}^{N} X_i}{N} \)

- Geometric mean: Calculating investment returns over multiple periods or to measure compound growth rates
 \(RG = [(1+R_1) \cdot \ldots \cdot (1+R_n)]^{1/N} - 1 \)

- Harmonic mean: \(\frac{1}{\sum_{i=1}^{N} \frac{1}{X_i}} \)

Variance & Std. Deviation

- Average of squared deviations from mean. Population variance:
 \(\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \bar{X})^2}{N} \)

- Sample variance:
 \(s^2 = \frac{\sum_{i=1}^{N} (X_i - \bar{X})^2}{n-1} \)

- Standard deviation:
 \(\sigma \text{ or } s = \sqrt{\text{Variance}} \)

Chebyshev’s Inequality: % of observations lying within k-standard deviations of the mean \(\geq 1 - 1/k^2 \)

Q:

ABC was incorporated on Jan 1, 2004. Its expected annual default rate of 10%. Assume a constant quarterly default rate. What is the probability that ABC will not have defaulted by April 1, 2004?

Ans:

\[
P(\text{No Default Year}) = P(\text{No def all Quarters})
\]
\[
= (1 - PDQ_1) \cdot (1 - PDQ_2) \cdot (1 - PDQ_3) \cdot (1 - PDQ_4)
\]
\[
PDQ_1 = PDQ_2 = PDQ_3 = PDQ_4 = PDQ
\]

\[
P(\text{No Def Year}) = (1 - PDQ)^4
\]

\[
P(\text{No Def Quarter}) = (0.9)^4 = 97.4\%
\]

Calculate the standard deviation of following data set:

- Data Set A: 10, 20, 30, 40, 50
- Data Set B: 10, 20, 70, 120, 130
Expected Return:
\[E(X) = P(x_1)x_1 + P(x_2)x_2 + ... + P(x_n)x_n \]

Probabilistic variance:
\[\sigma^2(x) = \sum P(x_i) [x_i - E(X)]^2 \]
\[= P(x_1)[x_1 - E(X)]^2 + P(x_2)[x_2 - E(X)]^2 + ... + P(x_n)[x_n - E(X)]^2 \]

Correlation & Covariance

Correlation = \[\text{Corr}(R_i, R_j) = \frac{\text{Cov}(R_i, R_j)}{\sigma(R_i) \cdot \sigma(R_j)} \]

Expected return, Variance of 2-stock portfolio:
\[E(R_p) = w_A E(R_A) + w_B E(R_B) \]
\[\text{Var}(R_p) = w_A^2 \sigma^2(R_A) + w_B^2 \sigma^2(R_B) + 2w_A w_B \rho(R_A, R_B) \sigma(R_A) \sigma(R_B) \]

Q:
Amit has invested $300 in Security A, which has a mean return of 15% and standard deviation of 0.4. He has also invested $700 in security B, which has a mean return of 7% and variance of 9%. If the correlation between A and B is 0.4, What is his overall expectation and Standard deviation of portfolio?

Return = 9.4%, Std Deviation = 7.8%
Return = 9.4%, Std Deviation = 24%
Return = 9.4%, Std Deviation = 28%

Ans:
The correct answer is Return = 9.4%, Std Deviation = 24%

\[\sqrt{w^2 \sigma_A^2 + (1 - w)^2 \sigma_B^2 + 2w(1 - w) \text{Cov}(A, B)} \]

Calculate the correlation between the following data set:
Data Set A: 10,20,30,40,50
Data Set B: 10,20,70,120,130
Sharpe Ratio

Measures excess return per unit of risk. Sharpe ratio = \(\frac{R_p - R_f}{\sigma_p} \)

Roy's safety - First ratio: \(\frac{R_p - R_{target}}{\sigma_p} \)

Sharpe Ratio uses risk free rate, Roys Ratio uses Min. hurdle rate
For both ratios, larger is better.

Coefficient of Variation

Dispersion relative to mean of a distribution; CV=\(\frac{\sigma}{\mu} \) (\(\sigma \) is std dev.)

Q:
If the threshold return is higher than the risk-free rate, what will be the relationship b/w Roy's safety-first ratio (SF) and Sharpe's ratio?
• Denominator (Sharpe) = Denominator (SF)
• \(R_{target} > R_f \)
• \(R - R_f > R - R_{target} \)
• Sharpe > SF

Ans:
\(R - R_f > R - R_{target} \)

Measurement Scales

Nominal Scale: Observations classified with no order. E.g. Participating Cars assigned numbers from 1 to 10 in the car race.

Ordinal Scale: Observations classified with a particular ranking out of defined set of rankings. E.g. Driver assigned a pole position according to their performance in heats.

Interval Scale: Observations classified with relative ranking. It's an ordinal scale with the constant difference between the scale values. E.g. Average temperature of different circuits.

Ratio Scale: It's an interval scale with a constant ratio of the scale values. True Zero point exists in the ratio scale. E.g. Average speed of the cars during the competition.

Q:
Which of the following type of scale is used when interest rates on Treasury bill is mentioned for 60 years?
A. Ordinal scale
B. Interval scale
C. Ratio scale

Ans: Ratio Scale

Expect 1 questions form Measurement Scales
Definition & Properties

- **Empirical probability**: Derived from historical data
- **A Priori probability**: Derived by formal reasoning
- **Subjective probability**: Derived by personal judgment

Sum Rule and Bayes' Theorem

- \(P(B) = P(A \cap B) + P(A^c \cap B) = P(B \mid A)*P(A) + P(B \mid A^c)*P(A^c) \)
- \(P(A \mid B) = P(B \mid A)*P(A) / [P(B \mid A)*P(A) + P(B \mid A^c)*P(A^c)] \)

Questions

1. The subsidiary will default if the parent defaults, but the parent will not necessarily default if the subsidiary defaults. Calculate the probability of a subsidiary & parent both defaulting. Parent has a PD of 0.5% and subsidiary has PD of 0.9%.
 - **Answer**: \(P(P \cap S) = P(S/P)*P(P) = 1*0.5% = 0.5\% \)

Dependent and Independent Events

- A and B are independent if and only if \(P(A \mid B) = P(A) \)
- If the above condition is not satisfied, they are dependent events.
Quantitative Analysis

Time Value of Money
Descriptive Statistics
Probability
Probability Distributions
Sampling
Hypothesis Testing
Technical Analysis

Normal Distribution
Binomial Distribution

Normal Distribution
Z-Score
Skewness and Kurtosis

- Continuous Distribution
- Described by mean & variance
- Symmetric about its mean
- Standard Normal Distribution
 - Mean = 0; Variance = 1

Z-score
No. of σ a given observation is away from population mean.
Z=(x-μ)/σ

Quantile:
At a particular time, the market value of assets of the firm is $100 Mn and the market value of debt is $80 Mn. The standard deviation of assets is $10 Mn. What is the distance to default?
Ans:
z = (A-K)/σ_A
 = (100-80)/10
 = 2

Q: Which of the following is likely to be a probability distribution function?
For X=[1,2,3,4,5], Prob[X]= 49/(75-X^2)
For X=[0,5,10,15], Prob[X]=X/30
For X=[1,4,9,16,25], Prob[X]= [(X)^1/2 - 1]/5
Ans:
The correct answer is For X=[0,5,10,15], Prob[X]=X/30
For all values of X, probability lies within [0,1] and sum of all the probabilities is equal to 1.

Q: If Z is a standard normal R.V. An event X is defined to happen if either -1< Z < 1 or Z > 1.5. What is the prob. of event X happening if N(1) = 0.8413, N(0.5) = 0.6915 and N(-1.5) = 0.0668, where N is the CDF of a standard normal variable?
Ans:
P(X)= P(-1< Z < 1) + P(Z > 1.5)
= N(1) - (1-N(1)) + N(-1.5)
= 2*0.8413 - 1 + 0.0668
= 0.7494

© EduPristine
Quantitative Analysis

- **Time Value of Money**
- **Descriptive Statistics**
- **Probability**
- **Probability Distributions**
- **Sampling**
- **Hypothesis Testing**
- **Technical Analysis**

Normal Distribution

- **Skewness**
 - **Positively:** Mean > median > mode
 - **Negatively:** Mean < median < mode

- **Kurtosis**
 - **Leptokurtic:** More peaked than normal (fat tails); excess kurtosis > 0
 - **Platykurtic:** Less peaked / Flatter than a normal; excess kurtosis < 0
 - **Mesokurtic:** Kurtosis of Normal = 3

Q: If distributions of returns from financial instruments are leptokurtotic. How does it compare with a normal distribution of the same mean and variance?

Ans: Leptokurtic refers to a distribution with fatter tails than the normal, which implies greater kurtosis.
Tracking Error

Tracking Error
- Total return on a portfolio (gross of fees) - the total return on the benchmark
- In an Index Fund, the tracking error should be minimal

Example: If a portfolio of U.S. stocks has a return of 5% in a period when a comparable U.S. stock index increases by 6% (both on a total return basis), the portfolio's tracking error for that period is -1%

Roy's Safety First Criterion:
- For optimal portfolio, minimize SF Ratio,
 - SF Ratio = \[\frac{E(R_p) - R_L}{\sigma_p}\]
- Shortfall Risk = Probability corresponding to SF Ratio

Uniform Distribution
- Continuous Distribution
- Outcomes uniformly distributed between \(a\) and \(b\)

Binomial Distribution
Discrete Distribution:
• Variables can take 2 values (success / failure)
• Expected Value = \(np \)
• Variance = \(np(1-p) \) (constant)
• Can describe changes in the value of an asset or portfolio
• The probability distribution for a Binomial Random Variable is given by:

\[
P(X=x)=C_n^r p^r(1-p)^{n-r}
\]

• Mean = \(np \), variance = \(np(1-p) \)

Q:
The Prob. of a stock moving up is 0.8 and moving down is 0.2 in a particular day. What is the probability that it would move up at least twice in the 5 working days of the week?

Ans:
\[
P(X \geq 2) = 1-P(X = 0) - P(X = 1)
\]
\[
=1-C_5^0(0.8)^0(0.2)^5 - C_5^1(0.8)^1(0.2)^4
\]
\[
=1-(0.2)^5 - 5*(0.8)^1*(0.2)^4
\]
\[
=0.99328
\]
Quantitative Analysis

Central Limit Theorem

Sampling Distribution

Standard Error (SE)

Probability distribution of all possible sample statistics computed from a set of equal-size samples randomly drawn from the same population.

As Sample Size increases, Sampling Distribution Becomes Almost Normal regardless of shape of population.

Sampling Biases

• Data Mining
• Sample Selection
• Survivorship
• Look-Ahead
• Time-Period

SE (σₜ) of the sample mean is σ of the dist. of sample means
• Known pop. Var. σₓ = σ / √(n)
• Unknown pop. var sₓ = s / √(n)

Q:
25 observation are taken from a sample of unknown variance. Sample mean of 70 and σ = 60. You wish to conduct a 2-tailed test of null hypothesis that the mean is equal to 50. What is most appropriate test statistic?

Ans:
Standard Error of mean (σₓ) = σ / √(n) = 60 / sqrt(25) = 12
Degrees of freedom = 24
Use t-statistic = (x – μ) / σₓ = (70 – 50) / 12 = 1.67

Expect 1 question on the calculation of standard error!!!
Null Hypothesis: H_0

Alternative Hypothesis: H_a

Confidence Intervals (CI)

Hypothesis Tests for Variances

One Tailed Test

Two Tailed Test

Hypothesis that the researcher wants to reject

Concluded if there is significant evidence to reject H_0

Range of values within which H_0 Cannot be rejected (say 90% or 95%). Known variance, 2 Tailed test, CI is: $X'' \pm z_{a/2}(\sigma/\sqrt{t})$

Inference Based on Sample Data

Real State of Affairs

H_0 is True

H_0 is False

Correct decision

Type II error

Confidence level = 1 - α

P (Type II error) = β

Type I error

Significance level = α^*

Correct decision

Power = 1 - β

*Term α represents the maximum probability of committing a Type I error, Type II error cannot be computed easily

Q: Co. ABC would give bonus to employees, if they get a rating higher than 7/10 from customers. A random sample of 30 customers is conducted with rating of 7.1/10. Formulate Hypothesis?

- Null Hypothesis: H_0: Mean<=7
- Alternate Hypothesis: H_a: Mean>7

Statistic to be measured: t-statistic, with 29 DoF
Null Hypothesis:

\(H_0 \)

Alternative Hypothesis:

\(H_a \)

Confidence Intervals (CI):

Hypothesis Tests for Variances

One Tailed Test:

Test if the value is greater than or less than \(K \)

\(H_0: \mu \leq K \) vs. \(H_a: \mu > K \)

Two Tailed Test:

Test if the value is different from \(K \)

\(H_0: \mu = 0 \) vs. \(H_a: \mu \neq 0 \)

Chi-Square test

\(\chi^2 = \frac{(n-1)s^2}{\sigma^2} \)

F test

\(F = \frac{S_1^2}{S_2^2} \)

Q:

If standard deviation of a normal population is known to be 10 & the mean is hypothesized to be 8. Suppose a sample size of 100 is considered. What is the range of sample means in which hypothesis can be accepted at significance level of 0.05?

Ans:

\[SE = \frac{\sigma}{\sqrt{n}} = \frac{10}{\sqrt{100}} = 1 \]

\[z = \frac{(x-\mu)}{SE} = \frac{(x-8)}{1} \]

At 95% -1.96<z<1.96

Therefore 6.04<x<9.96
Quantitative Analysis

- **Time Value of Money**
- **Descriptive Statistics**
- **Probability**
- **Probability Distributions**
- **Sampling**
- **Hypothesis Testing**
- **Technical Analysis**

Trend Analysis
- It is based on the observation that market participants tend to act in herds and that trends tend to stay in place for some time.
- In an uptrend, the security's prices go to higher highs and higher lows.
- A downward trend makes lower lows and lower highs.

Support:
A low price range in which buying activity is sufficient to stop the decline in price.

Resistance:
A high price range in which selling is sufficient to stop the rise in price.

Change in polarity principle:
Once a support level is breached, it becomes a resistance level and once a resistance level is breached, it becomes a support level.

- Supply-Demand dictate prices
- Driven by rational & irrational behavior
- Prices move in trends that persist for long periods
- Observe the actual shifts in supply / demand in market prices

Elliot Wave Theory
- In a Bull Market
 - An impulse wave consists
 1 = up
 2 = down
 3 = up
 4 = down
 5 = up
 - A Corrective Wave
 a = down
 b = up
 c = down
 - In a Bear Market, the impulse waves are named A-E and the corrective waves are numbered 1-3.

Fibonacci Sequence:
- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ...

Fibonacci ratios:
- $\frac{1}{2}=0.5$, $\frac{2}{3}=0.67$, $\frac{3}{5}=0.6$, $\frac{5}{8}=0.625$ etc...
- $2/1=2$, $3/2=1.5$, $5/3=1.67$, $8/5=1.60$, $13/8=1.625$
- The second series of numbers converge to around 1.618, called the Golden Ratio

Technical Analysis Indicators

Price Based Indicators
- Moving Average Lines – mean of last n closing prices over the last n days
- Bollinger Bands – standard deviation of closing prices over the last n days
- Oscillators
 - Based on market prices, scaled to oscillate around a given value
 - Rate of change oscillators
 - Relative Strength Index
 - Moving Average Convergence/Divergence
 - Stochastic Oscillator

Sentiment Based Indicators
- Put/Call Ratio
- Volatility Index
- Margin Debt
- Short Interest Ratio
- Arms Index (TRIN)
- Mutual Fund Cash Position
- New Equity Issuance
Thank you!

Contact:

E: help@edupristine.com
Ph: +1 347 647 9001